
Package: BalancedSampling (via r-universe)
September 13, 2024

Type Package

Title Balanced and Spatially Balanced Sampling

Version 2.0.6

Date 2024-02-15

Author Anton Grafström, Jonathan Lisic, Wilmer Prentius

Maintainer Anton Grafström <anton.grafstrom@gmail.com>

Description Select balanced and spatially balanced probability samples
in multi-dimensional spaces with any prescribed inclusion
probabilities. It contains fast (C++ via Rcpp) implementations
of the included sampling methods. The local pivotal method by
Grafström, Lundström and Schelin (2012)
<doi:10.1111/j.1541-0420.2011.01699.x> and spatially correlated
Poisson sampling by Grafström (2012)
<doi:10.1016/j.jspi.2011.07.003> are included. Also the cube
method (for balanced sampling) and the local cube method (for
doubly balanced sampling) are included, see Grafström and Tillé
(2013) <doi:10.1002/env.2194>.

License GPL (>=2)

Imports Rcpp (>= 1.0.12)

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

URL https://www.envisim.se/,

https://github.com/envisim/BalancedSampling/

NeedsCompilation yes

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Repository https://envisim.r-universe.dev

RemoteUrl https://github.com/envisim/balancedsampling

RemoteRef HEAD

RemoteSha 57c0158bb5554ca6d5521f837d163d1a783c0251

1

https://doi.org/10.1111/j.1541-0420.2011.01699.x
https://doi.org/10.1016/j.jspi.2011.07.003
https://doi.org/10.1002/env.2194
https://www.envisim.se/
https://github.com/envisim/BalancedSampling/

2 cube

Contents
cube . 2
genpopUniform . 4
getPips . 5
hlpm2 . 6
lcube . 8
lpm . 10
sb . 13
scps . 15
vsb . 17

Index 19

cube The Cube method

Description

Selects balanced samples with prescribed inclusion probabilities from a finite population using the
fast flight Cube Method.

Usage

cube(prob, x, eps = 1e-12)

cubestratified(prob, x, integerStrata, eps = 1e-12)

Arguments

prob A vector of length N with inclusion probabilities.

x An N by q matrix of balancing auxiliary variables.

eps A small value used to determine when an updated probability is close enough to
0.0 or 1.0.

integerStrata An integer vector of length N with stratum numbers.

Details

If prob sum to an integer n, and prob is included as the first balancing variable, a fixed sized sample
(n) will be produced.

Stratified cube:
For cubestratified, prob is automatically inserted as a balancing variable.
The stratified version uses the fast flight Cube method and pooling of landing phases.

Value

A vector of selected indices in 1,2,...,N.

cube 3

Functions

• cubestratified():

References

Deville, J. C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. Biometrika,
91(4), 893-912.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm for balanced sampling. Computational Statistics,
21(1), 53-62.

Chauvet, G. (2009). Stratified balanced sampling. Survey Methodology, 35, 115-119.

See Also

Other sampling: hlpm2(), lcube(), lpm(), scps()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
s = cube(prob, x);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
strata = c(rep(1L, 100), rep(2L, 200), rep(3L, 300), rep(4L, 400));
s = cubestratified(prob, x, strata);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

set.seed(12345);
prob = c(0.2, 0.25, 0.35, 0.4, 0.5, 0.5, 0.55, 0.65, 0.7, 0.9);
N = length(prob);
x = matrix(runif(N * 2), ncol = 2);
ep = rep(0L, N);
r = 10000L;
for (i in seq_len(r)) {

s = cube(prob, cbind(prob, x));
ep[s] = ep[s] + 1L;

}
print(ep / r);

End(Not run)

4 genpopUniform

genpopUniform Generate populations

Description

Generate uniform and poisson cluster process populations

If from and to is used with genpopPoisson together with mirror, the population will be bounded
within these values. For the genpopUniform, these numbers represent the minimum and maximum
values of the uniform distribution.

Usage

genpopUniform(size, dims = 2L, from = 0, to = 1)

genpopPoisson(
parents,
children,
dims = 2L,
from = 0,
to = 1,
distribution = function(n) rnorm(n, 0, 0.02),
mirror = TRUE

)

Arguments

size The size of the population

dims The number of auxiliary variables

from A number or a vector of size dims with the minimum values

to A number or a vector of size dims with the maximum values

parents The number of parent locations

children A number or a vector of size parents with the mean number of children to be
spawned.

distribution A function taking a number as a variable, returning the offset from the parent
location.

mirror If TRUE, the population is mirrored to be inside from and to.

Functions

• genpopPoisson(): Poisson cluster process

getPips 5

Examples

Not run:
set.seed(12345);
x = genpopUniform(120, 2L);
N = nrow(x);
n = 60;
prob = rep(n / N, N);
s = lpm2(prob, x);
b = sb(prob, x, s);

End(Not run)

Not run:
set.seed(12345);
x = genpopPoisson(70, 50, 2L);
N = nrow(x);
n = 60;
prob = rep(n / N, N);
s = lpm2(prob, x);
b = sb(prob, x, s);

End(Not run)

getPips Inclusion probabilities proportional-to-size

Description

Computes the first-order inclusion probabilties from a vector of positive numbers, for a probabilitiy
proportional-to-size design.

Usage

getPips(x, n)

Arguments

x A vector of positive numbers

n The wanted sample size

Value

A vector of inclusion probabilities proportional-to-size

6 hlpm2

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
x = matrix(runif(N * 2), ncol = 2);
prob = getPips(x[, 1], n);
s = lpm2(prob, x);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

End(Not run)

hlpm2 Hierarchical Local Pivotal Method 2

Description

Selects an initial sample using the lpm2(), and then splits this sample into subsamples of given
sizes using successive, hierarchical selection with the lpm2(). The method is used to select several
subsamples, such that each subsample, and the combination (i.e. the union of all subsamples), is
spatially balanced.

Usage

hlpm2(prob, x, sizes, type = "kdtree2", bucketSize = 50, eps = 1e-12)

Arguments

prob A vector of length N with inclusion probabilities.

x An N by p matrix of (standardized) auxiliary variables. Squared euclidean dis-
tance is used in the x space.

sizes A vector of integers containing the sizes of the subsamples. sum(sizes) =
sum(prob) must hold.

type The method used in finding nearest neighbours. Must be one of "kdtree0",
"kdtree1", "kdtree2", and "notree".

bucketSize The maximum size of the terminal nodes in the k-d-trees.

eps A small value used to determine when an updated probability is close enough to
0.0 or 1.0.

Details

The inclusion probabilities prob must sum to an integer n. The sizes of the subsamples sum(sizes)
must sum to the same integer n.

hlpm2 7

Value

A vector of selected indices in 1,2,...,N.

A matrix with the population indices of the combined sample in the first column, and the associated
subsample in the second column.

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

References

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3), 209-226.

Maneewongvatana, S., & Mount, D. M. (1999, December). It’s okay to be skinny, if your friends
are fat. In Center for geometric computing 4th annual workshop on computational geometry (Vol.
2, pp. 1-8).

Grafström, A., Lundström, N.L.P. & Schelin, L. (2012). Spatially balanced sampling through the
Pivotal method. Biometrics 68(2), 514-520.

Lisic, J. J., & Cruze, N. B. (2016, June). Local pivotal methods for large surveys. In Proceedings
of the Fifth International Conference on Establishment Surveys.

See Also

Other sampling: cube(), lcube(), lpm(), scps()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
sizes = c(10, 20, 30, 40);
s = hlpm2(prob, x, sizes);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

End(Not run)

8 lcube

lcube The Local Cube method

Description

Selects doubly balanced samples with prescribed inclusion probabilities from a finite population
using the Local Cube method.

Usage

lcube(prob, Xspread, Xbal, type = "kdtree2", bucketSize = 50, eps = 1e-12)

lcubestratified(
prob,
Xspread,
Xbal,
integerStrata,
type = "kdtree2",
bucketSize = 50,
eps = 1e-12

)

Arguments

prob A vector of length N with inclusion probabilities.
Xspread An N by p matrix of (standardized) auxiliary variables. Squared euclidean dis-

tance is used in the Xspread space.
Xbal An N by q matrix of balancing auxiliary variables.
type The method used in finding nearest neighbours. Must be one of "kdtree0",

"kdtree1", "kdtree2", and "notree".
bucketSize The maximum size of the terminal nodes in the k-d-trees.
eps A small value used to determine when an updated probability is close enough to

0.0 or 1.0.
integerStrata An integer vector of length N with stratum numbers.

Details

If prob sum to an integer n, and prob is included as the first balancing variable, a fixed sized sample
(n) will be produced.

Stratified lcube:
For lcubestratified, prob is automatically inserted as a balancing variable.
The stratified version uses the fast flight Cube method and pooling of landing phases.

Value

A vector of selected indices in 1,2,...,N.

lcube 9

Functions

• lcubestratified():

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

References

Deville, J. C. and Tillé, Y. (2004). Efficient balanced sampling: the cube method. Biometrika,
91(4), 893-912.

Chauvet, G. and Tillé, Y. (2006). A fast algorithm for balanced sampling. Computational Statistics,
21(1), 53-62.

Chauvet, G. (2009). Stratified balanced sampling. Survey Methodology, 35, 115-119.

Grafström, A. and Tillé, Y. (2013). Doubly balanced spatial sampling with spreading and restitution
of auxiliary totals. Environmetrics, 24(2), 120-131

See Also

Other sampling: cube(), hlpm2(), lpm(), scps()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
xspr = matrix(runif(N * 2), ncol = 2);
s = lcube(prob, xspr, cbind(prob, x));
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
xspr = matrix(runif(N * 2), ncol = 2);
strata = c(rep(1L, 100), rep(2L, 200), rep(3L, 300), rep(4L, 400));
s = lcubestratified(prob, xspr, x, strata);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

10 lpm

set.seed(12345);
prob = c(0.2, 0.25, 0.35, 0.4, 0.5, 0.5, 0.55, 0.65, 0.7, 0.9);
N = length(prob);
x = matrix(runif(N * 2), ncol = 2);
xspr = matrix(runif(N * 2), ncol = 2);
ep = rep(0L, N);
r = 10000L;
for (i in seq_len(r)) {

s = lcube(prob, xspr, cbind(prob, x));
ep[s] = ep[s] + 1L;

}
print(ep / r);

End(Not run)

lpm The (Local) Pivotal Methods

Description

Selects spatially balanced samples with prescribed inclusion probabilities from a finite population
using the Local Pivotal Method 1 (LPM1).

Usage

lpm(prob, x, type = "kdtree2", bucketSize = 50, eps = 1e-12)

lpm1(prob, x, type = "kdtree2", bucketSize = 50, eps = 1e-12)

lpm2(prob, x, type = "kdtree2", bucketSize = 50, eps = 1e-12)

lpm1s(prob, x, type = "kdtree2", bucketSize = 50, eps = 1e-12)

spm(prob, eps = 1e-12)

rpm(prob, eps = 1e-12)

Arguments

prob A vector of length N with inclusion probabilities, or an integer > 1. If an integer
n, then the sample will be drawn with equal probabilities n / N.

x An N by p matrix of (standardized) auxiliary variables. Squared euclidean dis-
tance is used in the x space.

type The method used in finding nearest neighbours. Must be one of "kdtree0",
"kdtree1", "kdtree2", and "notree".

bucketSize The maximum size of the terminal nodes in the k-d-trees.

lpm 11

eps A small value used to determine when an updated probability is close enough to
0.0 or 1.0.

Details

If prob sum to an integer n, a fixed sized sample (n) will be produced. For spm and rpm, prob
must be a vector of inclusion probabilities. If equal inclusion probabilities is wanted, this can be
produced by rep(n / N, N).

The available pivotal methods are:

• lpm1: The Local Pivotal Mehtod 1 (Grafström et al., 2012). Updates only units which are
mutual nearest neighbours. Selects such a pair at random.

• lpm2, lpm: The Local Pivotal Method 2 (Grafström et al., 2012). Selects a unit at random,
which competes with this units nearest neighbour.

• lpm1s: The Local Pivotal Method 1 search: (Prentius, 2023). Updates only units which
are mutual nearest neighbours. Selects such a pair by branching the remaining units, giving
higher probabilities to update a pair with a long branch. This changes the algorithm of lpm1,
but makes it faster.

• spm: The Sequential Pivotal Method. Selects the two units with smallest indices to compete
against each other. If the list is ordered, the algorithm is similar to systematic sampling.

• rpm: The Random Pivotal Method. Selects two units at random to compete against each other.
Produces a design with high entropy.

Value

A vector of selected indices in 1,2,...,N.

Functions

• lpm1():

• lpm2():

• lpm1s():

• spm():

• rpm():

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

12 lpm

References

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3), 209-226.

Deville, J.-C., & Tillé, Y. (1998). Unequal probability sampling without replacement through a
splitting method. Biometrika 85, 89-101.

Maneewongvatana, S., & Mount, D. M. (1999, December). It’s okay to be skinny, if your friends
are fat. In Center for geometric computing 4th annual workshop on computational geometry (Vol.
2, pp. 1-8).

Chauvet, G. (2012). On a characterization of ordered pivotal sampling. Bernoulli, 18(4), 1320-
1340.

Grafström, A., Lundström, N.L.P. & Schelin, L. (2012). Spatially balanced sampling through the
Pivotal method. Biometrics 68(2), 514-520.

Lisic, J. J., & Cruze, N. B. (2016, June). Local pivotal methods for large surveys. In Proceedings
of the Fifth International Conference on Establishment Surveys.

Prentius, W. (2023) Manuscript.

See Also

Other sampling: cube(), hlpm2(), lcube(), scps()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
s = lpm2(prob, x);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

set.seed(12345);
prob = c(0.2, 0.25, 0.35, 0.4, 0.5, 0.5, 0.55, 0.65, 0.7, 0.9);
N = length(prob);
x = matrix(runif(N * 2), ncol = 2);
ep = rep(0L, N);
r = 10000L;
for (i in seq_len(r)) {

s = lpm2(prob, x);
ep[s] = ep[s] + 1L;

}
print(ep / r);

set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);

sb 13

lpm1(prob, x);
lpm2(prob, x);
lpm1s(prob, x);
spm(prob);
rpm(prob);

End(Not run)

sb Spatial balance

Description

Calculates the spatial balance of a sample.

Usage

sb(prob, x, sample, type = "kdtree2", bucketSize = 10)

sblb(prob, x, sample, type = "kdtree2", bucketSize = 10)

Arguments

prob A vector of length N with inclusion probabilities, or an integer > 1. If an integer
n, then the sample will be drawn with equal probabilities n / N.

x An N by p matrix of (standardized) auxiliary variables. Squared euclidean dis-
tance is used in the x space.

sample A vector of sample indices.

type The method used in finding nearest neighbours. Must be one of "kdtree0",
"kdtree1", "kdtree2", and "notree".

bucketSize The maximum size of the terminal nodes in the k-d-trees.

Details

About voronoi and sumofsquares

Value

The balance measure of the provided sample.

Functions

• sblb(): Spatial balance using local balance

14 sb

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

References

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3), 209-226.

Maneewongvatana, S., & Mount, D. M. (1999, December). It’s okay to be skinny, if your friends
are fat. In Center for geometric computing 4th annual workshop on computational geometry (Vol.
2, pp. 1-8).

Stevens Jr, D. L., & Olsen, A. R. (2004). Spatially balanced sampling of natural resources. Journal
of the American statistical Association, 99(465), 262-278.

Grafström, A., Lundström, N.L.P. & Schelin, L. (2012). Spatially balanced sampling through the
Pivotal method. Biometrics 68(2), 514-520.

Prentius, W, & Grafström A. (2023). Manuscript.

See Also

Other measure: vsb()

Other measure: vsb()

Examples

Not run:
set.seed(12345);
N = 500;
n = 70;
prob = rep(n / N, N);
x = matrix(runif(N * 2), ncol = 2);
s = lpm2(prob, x);
b = sb(prob, x, s);

End(Not run)

scps 15

scps Spatially Correlated Poisson Sampling

Description

Selects spatially balanced samples with prescribed inclusion probabilities from a finite population
using Spatially Correlated Poisson Sampling (SCPS).

Usage

scps(prob, x, rand = NULL, type = "kdtree2", bucketSize = 50, eps = 1e-12)

lcps(prob, x, type = "kdtree2", bucketSize = 50, eps = 1e-12)

Arguments

prob A vector of length N with inclusion probabilities, or an integer > 1. If an integer
n, then the sample will be drawn with equal probabilities n / N.

x An N by p matrix of (standardized) auxiliary variables. Squared euclidean dis-
tance is used in the x space.

rand A vector of length N with random numbers. If this is supplied, the decision
of each unit is taken with the corresponding random number. This makes it
possible to coordinate the samples.

type The method used in finding nearest neighbours. Must be one of "kdtree0",
"kdtree1", "kdtree2", and "notree".

bucketSize The maximum size of the terminal nodes in the k-d-trees.

eps A small value used to determine when an updated probability is close enough to
0.0 or 1.0.

Details

If prob sum to an integer n, a fixed sized sample (n) will be produced. The implementation uses the
maximal weight strategy, as specified in Grafström (2012).

Coordinated SCPS:
If rand is supplied, coordinated SCPS will be performed. The algorithm for coordinated SCPS
differs from the SCPS algorithm, as uncoordinated SCPS chooses a unit to update randomly,
whereas coordinated SCPS traverses the units in the supplied order. This has a small impact on
the efficiency of the algorithm for coordinated SCPS.

Locally Correlated Poisson Sampling (LCPS):
The method differs from SCPS as LPM1 differs from LPM2. In each step of the algorithm, the
unit with the smallest updating distance is chosen as the deciding unit.

Value

A vector of selected indices in 1,2,...,N.

16 scps

Functions

• lcps():

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

References

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3), 209-226.

Maneewongvatana, S., & Mount, D. M. (1999, December). It’s okay to be skinny, if your friends
are fat. In Center for geometric computing 4th annual workshop on computational geometry (Vol.
2, pp. 1-8).

Grafström, A. (2012). Spatially correlated Poisson sampling. Journal of Statistical Planning and
Inference, 142(1), 139-147.

Prentius, W. (2023). Locally correlated Poisson sampling. Environmetrics, e2832.

See Also

Other sampling: cube(), hlpm2(), lcube(), lpm()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
s = scps(prob, x);
plot(x[, 1], x[, 2]);
points(x[s, 1], x[s, 2], pch = 19);

set.seed(12345);
prob = c(0.2, 0.25, 0.35, 0.4, 0.5, 0.5, 0.55, 0.65, 0.7, 0.9);
N = length(prob);
x = matrix(runif(N * 2), ncol = 2);
ep = rep(0L, N);
r = 10000L;
for (i in seq_len(r)) {

s = scps(prob, x);
ep[s] = ep[s] + 1L;

}

vsb 17

print(ep / r);

set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
scps(prob, x);
lcps(prob, x);

End(Not run)

vsb Variance estimator for spatially balanced samples

Description

Variance estimator of HT estimator of population total.

Usage

vsb(probs, ys, xs, k = 3L, type = "kdtree2", bucketSize = 40)

Arguments

probs A vector of length n with inclusion probabilities.

ys A vector of length n containing the target variable.

xs An n by p matrix of (standardized) auxiliary variables.

k The number of neighbours to construct the means around.

type The method used in finding nearest neighbours. Must be one of "kdtree0",
"kdtree1", "kdtree2", and "notree".

bucketSize The maximum size of the terminal nodes in the k-d-trees.

Details

If k = 0L, the variance estimate is constructed by using all units that have the minimum distance.

If k > 0L, the variance estimate is constructed by using the k closest units. If multiple units are
located on the border, all are used.

Value

The variance estimate.

18 vsb

k-d-trees

The types "kdtree" creates k-d-trees with terminal node bucket sizes according to bucketSize.

• "kdtree0" creates a k-d-tree using a median split on alternating variables.

• "kdtree1" creates a k-d-tree using a median split on the largest range.

• "kdtree2" creates a k-d-tree using a sliding-midpoint split.

• "notree" does a naive search for the nearest neighbour.

References

Grafström, A., & Schelin, L. (2014). How to select representative samples. Scandinavian Journal
of Statistics, 41(2), 277-290.

See Also

Other measure: sb()

Examples

Not run:
set.seed(12345);
N = 1000;
n = 100;
prob = rep(n/N, N);
x = matrix(runif(N * 2), ncol = 2);
y = runif(N);
s = lpm2(prob, x);
vsb(prob[s], y[s], x[s,]);
vsb(prob[s], y[s], x[s,], 0L);

End(Not run)

Index

∗ measure
sb, 13
vsb, 17

∗ sampling
cube, 2
hlpm2, 6
lcube, 8
lpm, 10
scps, 15

∗ utils
getPips, 5

cube, 2, 7, 9, 12, 16
cubestratified (cube), 2

genpopPoisson (genpopUniform), 4
genpopUniform, 4
getPips, 5

hlpm2, 3, 6, 9, 12, 16

lcps (scps), 15
lcube, 3, 7, 8, 12, 16
lcubestratified (lcube), 8
lpm, 3, 7, 9, 10, 16
lpm1 (lpm), 10
lpm1s (lpm), 10
lpm2 (lpm), 10
lpm2(), 6

rpm (lpm), 10

sb, 13, 18
sblb (sb), 13
scps, 3, 7, 9, 12, 15
spm (lpm), 10

vsb, 14, 17

19

	cube
	genpopUniform
	getPips
	hlpm2
	lcube
	lpm
	sb
	scps
	vsb
	Index

